7,651 research outputs found

    Descent Via Isogeny on Elliptic Curves with Large Rational Torsion Subgroups.

    Get PDF
    We outline PARI programs which assist with various algorithms related to descent via isogeny on elliptic curves. We describe, in this context, variations of standard inequalities which aid the computation of members of the Tate-Shafarevich group. We apply these techniques to several examples: in one case we use descent via 9-isogeny to determine the rank of an elliptic curve; in another case we find nontrivial members of the 9-part of the Tate-Shafarevich group, and in a further case, nontrivial members of the 13-part of the Tate-Shafarevich group

    K dwarfs and the chemical evolution of the Solar cylinder

    Get PDF
    K-dwarfs have life-times older than the present age of the Galactic disc, and are thus ideal stars to investigate the disc's chemical evolution. We have developed several photometric metallicity indicators for K dwarfs, based an a sample of accurate spectroscopic metallicities for 34 disc and halo G and K dwarfs. The photometric metallicities lead us to develop a metallicity index for K dwarfs based only on their position in the colour absolute-magnitude diagram. Metallicities have been determined for 431 single K dwarfs drawn from the Hipparcos catalog, selecting the stars by absolute magnitude and removing multiple systems. The sample is essentially a complete reckoning of the metal content in nearby K dwarfs. We use stellar isochrones to mark the stars by mass, and select a subset of 220 of the stars which is complete in a narrow mass interval. We fit the data with a model of the chemical evolution of the Solar cylinder. We find that only a modest cosmic scatter is required to fit our age metallicity relation. The model assumes two main infall episodes for the formation of the halo-thick disc and thin disc respectively. The new data confirms that the solar neighbourhood formed on a long timescale of order 7 Gyr.Comment: 14 pages, 15 figures, accepted by MNRA

    On the problems of measuring transient temperature in cryogenic fluids

    Get PDF
    Cryogenic sensor errors in measuring transient temperature in cryogenic fluid

    Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities

    Full text link
    We develop a new extended version of the mode-coupling theory (MCT) for glass transition, which incorporates activated hopping processes via the dynamical theory originally formulated to describe diffusion-jump processes in crystals. The dynamical-theory approach adapted here to glass-forming liquids treats hopping as arising from vibrational fluctuations in quasi-arrested state where particles are trapped inside their cages, and the hopping rate is formulated in terms of the Debye-Waller factors characterizing the structure of the quasi-arrested state. The resulting expression for the hopping rate takes an activated form, and the barrier height for the hopping is ``self-generated'' in the sense that it is present only in those states where the dynamics exhibits a well defined plateau. It is discussed how such a hopping rate can be incorporated into MCT so that the sharp nonergodic transition predicted by the idealized version of the theory is replaced by a rapid but smooth crossover. We then show that the developed theory accounts for the breakdown of the Stokes-Einstein relation observed in a variety of fragile glass formers. It is also demonstrated that characteristic features of dynamical heterogeneities revealed by recent computer simulations are reproduced by the theory. More specifically, a substantial increase of the non-Gaussian parameter, double-peak structure in the probability distribution of particle displacements, and the presence of a growing dynamic length scale are predicted by the extended MCT developed here, which the idealized version of the theory failed to reproduce. These results of the theory are demonstrated for a model of the Lennard-Jones system, and are compared with related computer-simulation results and experimental data.Comment: 13 pages, 5 figure

    Quark model study of the semileptonic B -> pi decay

    Full text link
    The semileptonic decay B->pi is studied starting from a simple quark model and taking into account the effect of the B* resonance. A novel, multiply subtracted, Omn\`es dispersion relation has been implemented to extend the predictions of the quark model to all physical q^2 values. We find |V_{ub}|=0.0034 +/- 0.0003(exp.)+/- 0.0007(theory), in good agreement with experiment.Comment: Three pages, two figures. To appear in the proceedings of Quark Confinament and Hadron Spectrum VII. Azores, September 200

    A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios

    Full text link
    We re-analyse the kinematics of the system of blue horizontal branch field (BHBF) stars in the Galactic halo (in particular the outer halo), fitting the kinematics with the model of radial and tangential velocity dispersions in the halo as a function of galactocentric distance r proposed by Sommer-Larsen, Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF stars. The basic result is that the character of the stellar halo velocity ellipsoid changes markedly from radial anisotropy at the sun to tangential anisotropy in the outer parts of the Galactic halo (r greater than approx 20 kpc). Specifically, the radial component of the stellar halo's velocity ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/- 10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The rapid decrease in the radial velocity dispersion is matched by an increase in the tangential velocity dispersion, with increasing r. Our results may indicate that the Galaxy formed hierarchically (partly or fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation scenario, which for quite a while has been favoured by most theorists and recently also has been given some observational credibility by HST observations of a potential group of small galaxies, at high redshift, possibly in the process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm

    The impact of supply chain complexity on manufacturing plant performance

    Get PDF
    This paper puts forth a model of supply chain complexity and empirically tests it using plant-level data from 209 plants across seven countries. The results show that upstream complexity, internal manufacturing complexity, and downstream complexity all have a negative impact on manufacturing plant performance. Furthermore, supply chain characteristics that drive dynamic complexity are shown to have a greater impact on performance than those that drive only detail complexity. In addition to providing a definition and empirical test of supply chain complexity, the study serves to link the systems complexity literature to the prescriptions found in the flexibility and lean production literatures. Finally, this research establishes a base from which to extend previous work linking operations strategy to organization design [Flynn, B.B., Flynn, E.J., 1999. Information-processing alternatives for coping with manufacturing environment complexity. Decision Sciences 30 (4), 1021–1052]
    corecore